
TOWARDS COMPREHENSIVE RESILIENCE FOR SCIENTIFIC APPLICATIONS 

THE RELIABILITY CHALLENGE Future HPC systems are expected to be significantly less reliable 

than past systems for three reasons. First, as the circuit feature sizes grow smaller, they become 

physically less able to maintain their signals (e.g. inter-wire distance shrinks to just a few atoms) 

(1). Second, power-constrained Exascale systems will need to be built from processors where less 

power is available to maintain consistent operation (2). Finally, the HPC market’s small size means 

that Exascale systems will be built from parts designed for larger, more profitable markets. 

Together, these trends mean that Exascale system designers will find it very challenging to build a 

fully reliable system. Components from the server market will be as reliable as Oracle or Google 

need them to be but will not be as power efficient as required for Exascale. Components used by 

embedded devices (e.g. cell phones) will achieve the required power efficiency but not reliability. 

Fundamentally, no other market has the same power constraints and large scale as HPC and thus, 

components from such markets will provide inadequate power/reliability tradeoffs. Since funding 

constraints cap the operating cost of an Exascale system to $20-$30m/year (i.e. 20-30 MW), 

Exascale designs must sacrifice reliability to deliver an operational system in a timely manner. 

THE CHALLENGE The likely constraints on the reliability of Exascle systems make it critical 

to fund and carry out a comprehensive research program to (i) design scientific and 

numerical algorithms that are resilient to a wide range of faults and (ii) evaluate their 

effectiveness in many different possible system scenarios. Although this challenge is at least 

as difficult as achieving high Exascale performance, the lack of dedicated attention to this 

area over the past decades leaves us decades behind and no time to lose. 

FAULT MODEL The first key challenge in any software resilience strategy is to clearly identify the 

types of faults software must be resilient to. Each fault type can be handled by a different class of 

solutions and some types may be inherently easier to handle for different types of applications. 

Knowing the relationship between fault type, fault frequency and the cost of handling faults in 

software informs system designers and application developers regarding the flexibility realistically 

available for Exascale system designs. Specifically, the following types of faults must be considered: 

 Fail-stop: Components (e.g. compute nodes or network switches) cease operation without 

corrupting any system or application state. Can be managed by generic checkpointing (3) (4) (5) 

(6) or replication (7) or application-specific techniques that recompute lost application state (8). 

 Silent Data Corruption: Introduce errors into application state or communication (e.g. transient 

voltage variation). Can be managed by generic replication (7) or application-specific techniques 

that check algorithmic invariants (9) (10) (11) and use them to fix the corruption (12) (13). 

 Detected Data Corruption: Errors may occur in system or application state but are quickly 

detected by hardware or OS mechanisms (14) (15). Can be managed more cheaply than above by 

localized rollback techniques such as message logging (16) or containment domains (17). 

 Performance Variation: The performance of various components degrades non-deterministically. 

Can be detected via statistical techniques (18) (19) and managed by latency-tolerant algorithms. 

A design’s productivity is determined by the performance and code development costs of handling 

each fault type and the cost of constraining hardware faults to a given type. We thus must develop 

methods to evaluate algorithm behavior given any distribution of faults that a system may exhibit. 



ALGORITHM DESIGN Although there exist generic techniques to detect and tolerate most types of 

faults (e.g. checkpointing or replication), they can be expensive in both performance and power 

efficiency. It is thus critical to develop new scientific and numerical algorithms or extensions of 

prior algorithms that are more resilient to the fault types listed above. The primary challenge of this 

work is to create and exploit key invariants of each algorithm to efficiently detect and correct 

errors. For example, in the context of linear algebra computations (e.g. matrix-matrix multiplication 

    ) it is possible to detect and correct errors by encoding the inputs using a linear error 

correcting code (10) and checking whether the encoding is preserved by the computation (e.g. 

            ). The same encoding can be used to correct a limited number of errors and as we 

have shown, can be extended to sparse linear operations (9) (12) (11). Further, we have shown that 

algorithms such as the Algebraic Multi-Grid are naturally resilient to numeric errors and require 

replication of pointers to become fully resilient (13). 

Although prior research on resilient algorithms has demonstrated that many individual algorithms 

can be made resilient, the fact is that making any new algorithm resilient is very challenging. In 

particular, data corruptions may push iterative algorithms outside their convergence region. Worse, 

they may corrupt key data structures, causing the algorithm to produce erroneous results. Further, 

real simulations, which combine many code modules are too complex for traditional algorithmic 

resilience techniques based on simple properties such as linearity. This means that we need 

aggressive research on new classes of algorithmic resilience techniques that address more generic 

application classes. For example, polynomial computations are significantly more general than 

linear functions but have sufficient structure to enable powerful error detection and correction 

techniques. Further, many non-linear algorithms can be locally approximated via linear functions or 

polynomials. Similarly, since the states of most simulations only show significant variation around 

shocks, it should be possible to efficiently detect and correct errors within them by using full 

replication around shocks and interpolation in smooth regions. 

Finally, since hardware faults may manifest themselves as unpredictable slowdowns of various 

system components (e.g. frequent memory error corrections) it is imperative to design algorithms 

that perform well even if some computations are transiently slower than usual (20). 

COMPOSITIONAL RELIABILITY Even as individual application modules such as solvers are made 

resilient to faults, it is critical to ensure that applications composed of such modules are also 

resilient. For instance, although one module may tolerate corruptions in individual data elements 

(e.g. AMG tolerates high-frequency error), they may not be as successful when small errors from 

other modules propagate to their inputs. Further, while one module may tolerate computation 

delays, two composed modules may be highly sensitive to delays in each other’s results. 

SUMMARY Limits of circuit design, power efficiency and a small market make it likely that Exascale 

systems will be unreliable. The grand challenge of Exascale resilience is thus high productivity and 

cost effectiveness. Although it is possible to make any system or application resilient to any type of 

fault, ensuring low cost comprehensive resilience requires research on hybrid solutions that 

combine algorithmic, system software and hardware resilience techniques. These solutions must be 

evaluated on realistic representations of faults to quantify the range of system designs for which 

they are effective. While our work has considered multiple aspects of this problem (21), more 

foundational research with real applications and systems is needed. 
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